
nutrients

Article

Acute Post-Prandial Cognitive Effects of Brown
Seaweed Extract in Humans

Crystal F. Haskell-Ramsay 1,* ID , Philippa A. Jackson 1 ID , Fiona L. Dodd 1, Joanne S. Forster 1,
Jocelyn Bérubé 2, Carey Levinton 3 and David O. Kennedy 1

1 Brain, Performance and Nutrition Research Centre, Northumbria University,
Newcastle Upon-Tyne NE1 8ST, UK; philippa.jackson@northumbria.ac.uk (P.A.J.);
f.dodd@northumbria.ac.uk (F.L.D.); jo.forster@northumbria.ac.uk (J.S.F.);
david.kennedy@northumbria.ac.uk (D.O.K.)

2 innoVactiv Inc., Rimouski, QC G5L 9H3, Canada; jberube@innovactiv.com
3 Institute of Health Policy, Management and Evaluation, University of Toronto,

Toronto, ON M4G 4J6, Canada; carey.levinton@utoronto.ca
* Correspondence: crystal.haskell-ramsay@northumbria.ac.uk; Tel.: +44-191-2274875

Received: 3 November 2017; Accepted: 10 January 2018; Published: 13 January 2018

Abstract: (Poly)phenols and, specifically, phlorotannins present in brown seaweeds have previously
been shown to inhibit α-amylase and α-glucosidase, key enzymes involved in the breakdown and
intestinal absorption of carbohydrates. Related to this are observations of modulation of post-prandial
glycemic response in mice and increased insulin sensitivity in humans when supplemented with
seaweed extract. However, no studies to date have explored the effect of seaweed extract on cognition.
The current randomized, placebo-controlled, double-blind, parallel groups study examined the impact
of a brown seaweed extract on cognitive function post-prandially in 60 healthy adults (N = 30 per
group). Computerized measures of episodic memory, attention and subjective state were completed
at baseline and 5 times at 40 min intervals over a 3 h period following lunch, with either seaweed
or placebo consumed 30 min prior to lunch. Analysis was conducted with linear mixed models
controlling for baseline. Seaweed led to significant improvements to accuracy on digit vigilance
(p = 0.035) and choice reaction time (p = 0.043) tasks. These findings provide the first evidence
for modulation of cognition with seaweed extract. In order to explore the mechanism underlying
these effects, future research should examine effects on cognition in parallel with blood glucose and
insulin responses.
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1. Introduction

The relationship between plasma glucose and cognitive function follows an inverted-U dose
response curve [1] and as such, it is beneficial to control the amount of glucose available from food
in order to avoid large deviations from the optimal required for cognitive functioning. The rate at
which glucose becomes available from food is measured by the glycemic index (GI), whereby a high
GI results in a rapid increase in plasma glucose, whereas a slower more sustained increase is observed
following a low GI food [2]. A number of studies have demonstrated that consumption of a low GI
food has beneficial effects on cognition when compared to high GI food (see [3] for systematic review).
However, findings in this area are mixed and it is difficult to draw firm conclusions due to differences
between the interventions, other than their GI. For instance, the comparison of meals that provide
different levels of macro and micronutrients [4], or the inclusion of fruit in one intervention but not the
other [5]; all of which have the potential to impact cognition. In addition, although adopting a low GI
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diet provides a means to control plasma glucose it has the drawback of limiting the types and quantity
of food that can be consumed.

An alternative approach to consuming low GI food is to slow the absorption of sugar from food by
inhibiting the digestion of carbohydrates. This is achieved in the treatment of type 2 diabetes through
administration of the oral antidiabetic drug acarbose, which inhibits α-amylase and α-glucosidase, the
key enzymes involved in the breakdown and intestinal absorption of starch [6,7]. While effective, there
are a number of side effects of acarbose including abdominal distention and gas accumulation [8],
which make this a less than ideal solution. A potential natural alternative to acarbose is seaweed.
Ascophyllum nodosum (kelp) is a brown algae belonging to the Fucaceae family, which was shown
in vitro to inhibit α-glucosidase to a greater extent than acarbose, while inhibiting α-amylase to a lesser
extent [9]. Inhibition of α-glucosidase by A. nodosum has been replicated using algae from a variety of
locations [10–12], and similar α-amylase inhibition has also been observed when using a comparable
extraction technique [10]. Inhibition of both enzymes has been shown to correlate with total phenolic
content [9], and this is supported by the greater inhibition shown by another member of the Fucaceae
family, Fucus vesiculosus (bladder wrack), which has a higher phenolic content than A. nodosum [10].
Previous in vitro findings from (poly)phenol-rich berry extracts also support the role of (poly)phenols
in this relationship [13–16]. Of particular interest are phlorotannins, which are almost unique to
brown algae. Comparison of phenolic-enriched and phlorotannin-rich extracts of A. nodosum revealed
equivalent inhibition of α-glucosidase across the two fractions, which was greater than that shown
with acarbose. In terms of α-amylase inhibition, this was shown to be substantial following the
phlorotannin-rich fraction but lower than that observed following the phenolic-enriched fraction,
suggesting phlorotannins may be a suitable intervention for post-prandial glycemic control [12].

Exploration of the effects of a hot water extract containing phlorotannins derived from A. nodosum
and F. vesiculosus (InSea2®—innoVactiv, Rimouski, QC, Canada) in vivo revealed a significant reduction
in blood glucose and non-significant modulation of insulin response in rats following starch gavage.
This extract was also shown to decrease α-glucosidase and α-amylase in a dose-dependent manner
in vitro [17]. Recent data also indicates that in mice fed a normal diet, insulin is significantly decreased
at 30 min following supplementation with A. nodosum and F. vesiculosus extracts, as compared to control.
A significant reduction in the initial peak in blood glucose was also observed followed by significantly
higher levels at 180 min resulting in no effect on overall area under the curve (AUC) [18]. Support for
these findings comes from a randomized, controlled trial demonstrating that 500 mg of the same extract,
taken 30 min prior to a 50 g carbohydrate load in the form of bread, lowered the insulin incremental
area under the curve and increased insulin sensitivity [19]. Importantly, no evidence of increased side
effects was observed when compared to placebo over a 3-h time-period after ingestion [19].

Given that stores of glucose in the brain are limited, a steady supply is needed in order to maintain
optimal cognitive function. It is thus likely that effects of glycemic regulation will be most apparent
following engagement in high cognitive demand, which results in increased depletion of brain stores.
The aim of the current randomized, placebo-controlled, double-blind, parallel groups study was
to explore the impact of a brown seaweed extract containing phlorotannins (InSea2®) on cognitive
function when assessed post-prandially following a high-carbohydrate lunch. It was hypothesized
that the algae extract would improve cognition when compared to placebo at a number of time-points
post-consumption as part of an intense repeated-block paradigm.

2. Materials and Methods

2.1. Design

A randomized, placebo-controlled, double-blind, parallel groups design was utilized. All participants
attended the laboratory once and received either seaweed extract or placebo. The study was approved by
Northumbria University’s Department of Psychology Ethics Committee and was conducted according to
the Declaration of Helsinki (1964). The study was registered on clinicaltrials.gov (identifier: NCT03328923).



Nutrients 2018, 10, 85 3 of 14

2.2. Initial Screening

Prior to participation, volunteers were required to provide informed consent. Non-smokers
who self-reported that they were in good health, with no pre-existing medical condition or illness,
for whom English was their first language and with a BMI > 18.5 and <30 km/m2 were recruited
to take part. Given the potential impact on cognition or the possibility of interaction with the
study intervention, volunteers confirmed that they were not habitually taking any dietary/herbal
supplements or medication (excluding the contraceptive pill). Participants did not consume caffeine
excessively (determined as >500 mg per day, assessed by caffeine consumption questionnaire) and did
not have a history of/current diagnosis of drug or alcohol abuse (self-report). They confirmed that
they did not have a history (or current incidence) of head trauma, learning difficulties, attention deficit
hyperactivity disorder (ADHD), or dyslexia; they did not suffer from frequent migraines (more than
once per month) or have a visual impairment that could not be corrected with glasses/contacts. They
also confirmed that they were not pregnant, seeking to become pregnant or lactating. Volunteers with
a history of intestinal tract surgery, or any food intolerances/sensitivities, including seafood/fish
allergies were also excluded from participation.

2.3. Participants

Sixty healthy adults (27 males) between the ages of 18 and 65, who reported post-meal drowsiness
were recruited through opportunity sampling within Newcastle upon Tyne and the surrounding areas.
The inclusion of those who reported post-meal drowsiness was intended to allow a more sensitive
backdrop for effects to be observed following lunch consumption. Participants were reimbursed
£40 for their participation. All participants gave their written informed consent prior to their inclusion
in the study.

2.4. Treatment

Participants attended one study visit and received either 500 mg brown seaweed extract (InSea2®)
or placebo. InSea2® is characterized by a polyphenol content of >20% (chlorogenic acid equivalent)
and is subjected to extensive validation before batch release including microbiological contaminants,
chemical contaminants and bioassay (minimum inhibitory activity on α-amylase). Full details of
treatment composition can be found in Table 1. Treatment and placebo were identical in appearance
and were administered in the form of two tablets contained within a sealed foil sachet in order to
mask any taste differences and to ensure that participants remained blind to the treatment they had
received. Treatments were prepared by innoVactiv and were then randomized by an independent
third-party who had no further involvement in the study, using computer generated random numbers.
Each participant received the next sequential randomization number.

Table 1. Treatment composition.

Ingredient Function
Quantity per Unit

Placebo Seaweed

Brown Seaweed Powder Active ingredient 0 mg 250 mg
Microcrystalline cellulose Bulking agent 191 mg 100 mg

Calcium phosphate dibasic Diluent 287 mg 150 mg
Magnesium stearate Lubricant 5 mg 5 mg

Caramel Color 25 mg 3 mg

Capsules composition:

Titanium dioxide
Hypromellose

Opacifier
Structure

1.8 mg
94.3 mg

0 mg
0 mg
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2.5. Cognitive and Mood Measures

All cognitive and mood measures were administered using the Computerized Mental Performance
Assessment System (COMPASS, Northumbria University, Newcastle upon Tyne, UK) a software
platform for the presentation of classic and bespoke computerized cognitive tasks. This platform has
previously been shown to be sensitive to a range of nutritional interventions [20–22]. The computerized
tests were conducted via a laptop computer with all stimuli randomized across participant and
assessment. Progress through the tasks was controlled by the participant, with brief instructions given
on-screen before the start of each task. Tasks were presented in the same order on each occasion
and, with the exception of the paper and pencil tasks (word recall), responses were made using
a response pad.

2.5.1. Word Presentation

Fifteen words were presented sequentially on screen for the participant to remember at the rate of
one every second, with stimulus duration of one second.

2.5.2. Immediate Word Recall

The participant was allowed 60 s to write down as many of the words as possible. Outcomes
were number correct, errors, and number of intrusions from previous lists.

2.5.3. Simple Reaction Time (SRT)

An upwards-pointing arrow was displayed on the screen at irregular intervals. Participants
responded by pressing the response button as quickly as they could as soon as they saw the arrow
appear. The task ran for ~3 min (70 stimuli) and the inter-stimulus interval varied randomly between
1 and 3.5 s. Speed of response (ms) was recorded.

2.5.4. Digit Vigilance

A single randomly selected target digit was continuously displayed to the right of the screen.
A series of single digits were then presented to the left of the screen at the rate of 150 per minute.
The participant was required to press the response button as quickly as possible every time the digit in
the series matched the target digit. The task lasted 3 min. Task outcomes were accuracy (%), reaction
time for number of correct responses (ms) and false alarms (number).

2.5.5. Choice Reaction Time (CRT)

An arrow appeared on the screen pointing to the left or to the right. Participants responded by
pressing a left or right response pad button corresponding to the direction of the arrow. The task ran for
~3 min (70 stimuli) and the inter-stimulus interval varied randomly between 1 and 3.5 s. The outcomes
were speed of response (ms) and accuracy (% correct).

2.5.6. Visual Analogue Scales (VAS)

Participants rated their current subjective state by positioning an ‘X’ with a mouse/cursor on lines
headed ‘concentration’, ‘mental stamina’, ‘physical stamina’ (anchored at the left by ‘very low’ and the
right by ‘very high’) and ‘mental tiredness’ and ‘physical tiredness’ (anchored at the left by ‘not at all’
and the right by ‘extremely’). They also rated their current levels of hunger, thirst and fullness (‘not at
all’ and ‘extremely’). Item scores were calculated as % distance along the line from the left.

2.6. Procedure

Participants were required to attend the Brain, Performance and Nutrition Research Centre
laboratory of Northumbria University on one occasion having abstained from all food and drink,
except water, for 12 h. The visit commenced at 10 a.m. and participants left at approximately 4 p.m.
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They remained in the research center throughout. Testing took place in a suite of testing facilities with
participants visually isolated from each other.

The initial phase of the laboratory visit comprised: obtaining of informed consent; confirmation
of eligibility to take part, including completion of a caffeine consumption questionnaire and collection
of demographic data; training on the cognitive and mood measures with one full completion of the
tasks; randomization to treatment.

Participants then performed the baseline assessment (10 min), which comprised one completion of
immediate word recall, simple reaction time (SRT), digit vigilance, choice reaction time (CRT) and visual
analogue mood scales (VAS). Participants then took their allotted treatment and had a 30-min break
before commencing their lunch. Lunch consisted of 4 sweet waffles with 2 tablespoons of pure maple
syrup (containing 50 g of carbohydrates as starch and sugar) and 250 mL of water to drink (ad libitum
water consumption was also permitted). Participants were given 20 min to eat and were encouraged
to eat all of the food provided if possible. All participants conformed to this request. Immediately
following lunch their first post-dose assessment commenced, this was identical to the baseline but
involved 3 repetitions of the attention tasks (SRT, digit vigilance and CRT) in succession preceded
by one repetition of immediate word recall and followed by one completion of the VAS (~30 min).
Further identical assessments commenced at 40, 80, 120 and 160 min post-lunch, with ~10-min breaks
between each assessment. Assessments were conducted between 0 and 190 min post-meal on the basis
of previous data showing reductions in insulin levels across a 180 min post-prandial period following
the same seaweed extract [19]. The timings of assessments within that period were dictated by the
length of the assessment and the allowance of a short rest between assessments. The structure of the
testing session is shown in Figure 1.
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Figure 1. Structure of the testing session.

2.7. Statistical Analysis

Blinded data screening and analysis were conducted on all measures with codes broken only
once all analyses were complete. To ascertain comparability between treatment groups, baseline
performance and demographics were analyzed; baseline data and continuous demographic variables
were analyzed by independent t-tests, and categorical characteristics by Pearson’s chi-square.
Any demographic characteristics that differed significantly between groups were entered in the
analyses of efficacy.

All attention measures were analyzed with linear mixed models including the respective baseline as
a covariate and the terms treatment, assessment, repetition, respective baseline, treatment × assessment,
treatment × repetition, treatment × assessment × repetition as fixed effects. Word recall and visual
analogue mood scales were analyzed with linear mixed models including the respective baseline
as a covariate and the terms treatment, assessment, respective baseline, treatment × assessment as
fixed effects.
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3. Results

3.1. Participant Demographics

Sixty participants were randomized. Following blinded data screening, one participant was
removed from the placebo group as this participant had not engaged with the tasks and produced
consistent outliers (see Figure 2). Demographic data for the remaining 59 participants on which the
analysis was conducted are presented in Table 2.
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Table 2. Participant demographics.

Measure
Placebo Seaweed

Mean SD Mean SD

N 29 - 30 -
Sex (% male) 59 - 50 -
Age (years) 37.9 ±16.9 33.1 ±14.6

Years in education 17.5 ±0.85 17.6 ±0.66
Caffeine consumption (mg/day) 165.2 ±118.0 170.3 ±109.3

Fruit and vegetables (portion/day) 3.78 ±1.17 4.37 ±1.61
BMI (kg/m2) 24.0 ±3.05 24.2 ±3.55

SD = Standard deviation; BMI = Body mass index.

3.2. Baseline Performance

Independent t-tests revealed a significant difference at baseline in digit vigilance reaction time
t(45.725) = 2.055, p = 0.046, indicating faster performance on this task in those allocated to receive
brown seaweed. As with all other variables, this baseline was entered as a covariate into the analysis
of post-treatment scores for that outcome.
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3.3. Intervention Effects

3.3.1. Digit Vigilance

A significant treatment × repetition interaction was observed for digit vigilance accuracy
(F(2, 552.240) = 3.377, p = 0.035). Pairwise comparisons revealed that those receiving brown seaweed
were significantly more accurate than placebo, equating to ~4%, during repetition 1 of the assessments
(p = 0.039). See Figure 3. There were no other significant effects on digit vigilance accuracy and no
significant effects on digit vigilance reaction time.
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Figure 3. Adjusted means and standard errors (SE) for digit vigilance accuracy collapsed across
assessments and * = Treatment × repetition effect, significant difference between placebo and seaweed.

When examining counts of false alarms, no statistically significant effect of treatment was observed.
However, the rate of false alarms was not uniform across participants and treatment groups. In order
to explore this effect in more detail, rather than examining counts, a dichotomous variable was created
by assigning a value of 1 if the number of false alarms equaled or exceeded a threshold value ranging
from 4 to 7, and a value of 0 if the number was lower than the threshold. Threshold analysis was then
conducted on high and low false alarm rates using logistic mixed effect models to compare treatment
effects for each of the thresholds. In Table 3, therefore, an odds ratio of 1 reflects an equal likelihood of
exceeding a threshold when comparing seaweed with placebo and any number above 1 reflects the
increased chance of exceeding that threshold following placebo compared to seaweed. This analysis
revealed statistically significant differences between placebo and seaweed at rates between 5 and 7,
with higher false alarm rates in the placebo group.

Table 3. Threshold analysis of digit vigilance false alarms.

Threshold Odds Ratio Confidence Interval (95%) Significance (p-Value)

≥4 1.61 (0.62, 4.22) 0.33
≥5 2.9 (1.16, 7.27) 0.02
≥6 2.77 (1.0, 7.81) 0.05
≥7 3.41 (1.21, 9.66) 0.02
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3.3.2. Choice Reaction Time

A significant treatment × assessment interaction was observed for accuracy of choice reaction
(F(4, 371.063) = 2.489, p = 0.043). Pairwise comparisons revealed no significant differences between
treatment groups. However, within-group analysis revealed a significant decline in performance at the
120 (p = 0.001) and 160 min (p = 0.020) assessments in the placebo group when compared to the first
assessment post-lunch, which was not apparent in the seaweed group. There were no other significant
effects on accuracy of choice reaction and no significant effects on choice reaction time (see Table 4 for
means and standard errors for attention tasks).

Table 4. Attention scores. Mean and standard errors are presented. Baseline values are raw scores
and post-dose values are derived from the linear model with adjustment for the corresponding
baseline value.

Measure Treatment N Repetition Baseline SE
Session Post-Lunch

0 min 40 min 80 min 120 min 160 min SE

Simple Reaction
Time (ms)

Placebo 29
1 295.7 ±7.11 290.7 294.2 322.2 324.9 342.9

±24.02 - 324.4 370.9 380.5 375.8 394.6
3 - 425 406.5 416.8 421.9 391.8

InSea2® 30
1 276.9 ±6.39 293.4 305.7 323.7 322.3 333.4

±23.62 - 316 346.8 342.2 375.8 375.5
3 - 359.8 390.9 401.1 443.4 381.6

Digit Vigilance
Accuracy (%)

Placebo 29
1 89.12 ±2.61 89.5 88.8 85.4 86.4 81.5

±1.912 - 89.4 86 83.4 85.1 81.7
3 - 87.1 84.3 80.5 82.8 84.6

InSea2® 30
1 93.33 ±1.63 91.6 91.2 89.3 90.4 88.4

±1.882 - 90 87.4 88.1 86.9 82.9
3 - 87.6 84.6 84.7 82.5 82

Digit Vigilance
Reaction Time

(ms)

Placebo 29
1 434.7 ±8.89 426.9 439.6 449.8 445.7 448.8

±5.272 - 437 449 446.6 453.6 450.3
3 - 438.8 451.6 453.8 453.5 451.6

InSea2® 30
1 413.4 ±5.28 439.3 444.7 449.4 448.7 447.3

±5.182 - 448.6 451.5 456 456.6 458
3 - 448.2 464.7 463.6 459.2 459.6

Digit Vigilance
False Alarms

(Number)

Placebo 29
1 1.79 ±0.43 2.15 2.84 3.74 3.5 3.81

±0.492 - 2.39 3.39 4.01 3.43 4.43
3 - 3.7 4.5 4.67 4.19 4.6

InSea2® 30
1 1.5 ±0.36 2.22 2.32 3.05 2.82 3.09

±0.482 - 2.09 2.69 3.25 3.39 3.99
3 - 3.52 3.95 3.45 3.59 4.39

Choice Reaction
Time Accuracy

(%)

Placebo 29
1 97.6 ±0.36 96.7 96.6 95.6 95.9 96.2

±0.552 - 96.6 96.4 96.7 95.2 95.8
3 - 96.5 95.8 96.2 95.3 95.4

InSea2® 30
1 96.2 ±0.73 96.3 95.9 96 96 95.9

±0.542 - 95.7 95.9 96.1 95.5 95.9
3 - 95.3 95.4 94.4 95.7 96.2

Choice Reaction
Time (ms)

Placebo 29
1 436.4 ±14.6 425.1 443.2 466 474.4 475.9

±21.12 - 473.9 476.6 516.3 506.7 524.8
3 - 472.4 498.7 479.8 523.2 485

InSea2® 30
1 406.3 ±7.50 429.5 448.5 457.4 468 478

±20.72 - 451.9 478.8 487.5 524.4 489.8
3 - 477.9 513.5 498 559.6 496.6

3.3.3. Simple Reaction Time, Word Recall and VAS Mood Scale Ratings

There were no significant differences between the intervention groups on any outcomes from the
simple reaction time task, word recall or VAS mood ratings.

3.4. Treatment Guess

Success of blinding was confirmed via treatment guess at the end of the study. Seventy-six percent
of participants in the placebo group and 77% of participants in the seaweed group believed they had
received placebo. Chi-squared analysis confirmed this to be a non-significant difference (p = 0.942).
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3.5. Safety Evaluation

All 60 participants were included in the analysis of safety, assessed via reporting of adverse events.
No adverse effects of treatment were reported.

4. Discussion

The aim of the current randomized, placebo-controlled, double-blind, parallel groups study was
to explore the impact of a brown seaweed extract containing phlorotannins (InSea2®) on cognitive
function when assessed post-prandially following a high-carbohydrate lunch. The results of the
current study demonstrate that the seaweed extract was able to improve cognitive performance when
compared to placebo. This improvement was observed as significantly greater accuracy on a digit
vigilance task when measured during the first repetition of each assessment and attenuation of a decline
in choice reaction accuracy seen during later assessments following placebo. Similarly, participants in
the placebo group were significantly more likely to produce false alarm rates of 5 and above when
compared to the seaweed group.

This is the first demonstration of cognitive benefits following intake of a seaweed extract and
adds to a growing body of literature indicating positive effects of (poly)phenol-rich foods on cognitive
performance across various age groups. Acutely, improved continuous performance task accuracy and
increased simple finger tapping was observed in middle-aged males following orange juice [23], which
is supported by evidence for improvement to digit vigilance accuracy and serial three subtraction
performance in elderly adults following curcumin consumption [24]. In healthy young adults, acute
intake of purple grape juice was shown to increase a composite score of speed of attention [25], whereas
two different extracts of blackcurrant juice were able to either decrease digit vigilance reaction time
following a cold-pressed extract or improve accuracy of rapid visual information processing (RVIP)
following freeze-drying [22]. Similarly, acute cocoa consumption improved serial three subtraction
performance with a dose-specific increase to speed of RVIP [26]. The lack of effects on memory in
the current study is unsurprising as previous studies have also failed to find these effects acutely in
young [25], middle-aged [23] or elderly participants [24]. However, acute supplementation with wild
blueberry was able to improve memory in 7–10 year old children [27], suggesting that there may be
specific stages of development which are sensitive to acute manipulation with (poly)phenols.

A number of mechanisms have been proposed for the action of phenolic compounds on brain
function. For instance, cognitive improvements have been attributed to increased cerebral blood
flow, which follows on from data showing declines in cerebral blood flow in ageing [28,29] and
an inverse relationship between cerebral blood flow velocity and cognitive decline [30]. Importantly,
significant benefits to cognition and cerebral blood volume following high flavan-3-ol cocoa have
been observed in older adults, with cerebral blood volume positively correlated with cognitive
task performance [31]. Increases to cerebral blood flow have also been observed in healthy young
adults following (poly)phenols [32,33], demonstrating that these modulations are not restricted
to older populations. A related explanation for benefits to cognition is a modulation of glucose
metabolism. The seaweed extract employed here has previously been shown to decrease α-amylase
and α-glucosidase enzymes in a dose-dependent manner in vitro and to lower blood glucose response
in vivo, in rats following starch gavage [17]. Inhibition of these enzymes and the resultant reduced
glycemic response to food was therefore predicted to improve cognition, as indicated by previous
studies in a range of subjects showing beneficial effects following low glycemic index (GI) foods when
compared to high [5,34–36].

Studies into cognitive effects of GI have, however, produced conflicting results [4,37,38], which
are potentially due to differences other than GI between the meals being compared, such as energy
density, macronutrient content and micronutrient profile. Data showing modulation of glucose
and insulin response following berries [39–41] and a reduction in the post-prandial blood glucose
response following grape seed extract [42] indicate the potential for phenolic-rich food in improving
glucoregulation. However, these foods also contain a high sugar content, which is not the case
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for seaweed. The addition of a seaweed extract to a meal, therefore, represents a potentially novel
approach to lowering glycemic index without significantly altering any other characteristics of the
meal. The importance of glucoregulation is demonstrated by studies examining the relationship
between impaired glucose tolerance and poor cognition [43]. However, the metabolism of glucose
is suggested to be more important than the absolute level and a key mediator in this metabolism is
insulin. The importance of insulin to brain function is demonstrated by data showing impairment
to cognition in conditions of insulin resistance such as type 2 diabetes. However, whether this is
a direct effect or whether improved sensitivity leads to indirect effects via increased supply of glucose
to the brain remains to be elucidated. Interestingly, the seaweed extract employed here lowered the
insulin incremental area under the curve and increased insulin sensitivity in humans, while the impact
on post-prandial glucose levels did not reach statistical significance [19]. Previous studies showing
associations between improved cognition and increased insulin sensitivity following short-term
supplementation with drugs [44], and cocoa flavan-3-ols [45,46], support the importance of this but
this has not been sufficiently explored in relation to acute changes in insulin sensitivity. In order to
make a direct link between glycemic control and cognitive effects acutely, it is necessary to measure
glycemic and insulinemic response concomitantly with cognitive outcomes and preferably over a large
post-prandial period.

Time course of effects is an important consideration when assessing the impact of GI on cognition
given that lowering GI flattens and extends the time course of food related increases in glucose levels.
Interestingly, studies that have failed to show positive effects of low GI food have typically assessed
effects over a shorter timeframe of up to 105 min [4,47], whereas studies showing cognitive benefits
have done so at later post-dose assessments, for instance at 120 to 240 min post-prandially [48–50].
In the current study, the cognitive assessments extended from immediately post-meal to 190 min
post-meal on the basis of previous data showing reductions in insulin levels across a 180 min
post-prandial period following the same seaweed extract [19]. While digit vigilance accuracy was
improved during the first repetition of the tasks across all post-meal assessments, examination of
the data (Table 2) reveals that this effect was most striking numerically during the final assessment.
Similarly, the treatment by assessment interaction on choice reaction accuracy was supported by
a within-groups analysis suggesting attenuation of performance deficits following seaweed extract
that was restricted to the last two assessments. It is noteworthy that an absence of any effects on word
recall may be due to the assessments finishing before the time point at which beneficial effects of low
GI on memory function have previously been detected (210 min post-meal) [51].

The current study employed a novel repeated block paradigm designed to be cognitively
demanding and to induce fatigue. Furthermore, participants were recruited who self-reported
post-meal drowsiness to allow a more sensitive backdrop for effects to be observed following lunch
consumption. However, despite decreases in concentration, mental stamina and physical stamina with
accompanying increases in mental and physical tiredness following lunch, no effects of intervention on
subjective state measures were observed across any of the assessments. In addition, despite anecdotal
reports of tiredness and difficulty in completing the tasks, there was no evidence of significant decline
in subjective state across the post-lunch assessments. It is possible that the paradigm was simply
too intense and participants disengaged from the tasks meaning that no effects on fatigue were
apparent. Data showing effects of the seaweed extract on digit vigilance accuracy during the first
repetition only may provide support for this suggestion, with effects not being apparent during
subsequent repetitions due to a lack of engagement with the task. In order to ensure that the tasks
are demanding enough to deplete brain glucose stores it may be preferable for future research to
employ a demanding paradigm that has previously been shown to be sensitive to supplementation
with cocoa flavan-3-ols [26] and following Panax ginseng, which also led to an acute glucoregulatory
effect [52]. Another important aspect of the current study is the use of parallel groups rather than
a more robust repeated measures approach. A parallel groups design was chosen in order to reduce
the impact of practice and order effects; however, the use of repeated measures would go some way
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to overcoming issues with individual differences inherent in dietary intervention studies and would
greatly strengthen the design.

5. Conclusions

In summary, the results presented here are promising and indicate a benefit to cognition following
a brown seaweed extract. These effects were shown following a supplement containing the equivalent
of 10 g of dried seaweed, suggesting that these benefits could be obtained from dietary intake. Further
research is required in order to replicate these findings and to explore any dose-dependent effects of this
extract. These studies should investigate the effects on cognition in combination with glucoregulatory
measures to verify the importance of this mechanism. In order to provide a full picture of the
profile of these effects, future studies should investigate these effects over a post-prandial period
that extends beyond 3 h when blood glucose levels have typically returned to baseline in the control
condition. Fasting until lunchtime, as in the current study, has previously been shown to trigger
increased postprandial hyperglycemia and impaired insulin response after lunch in type 2 diabetes [53],
indicating that these findings may have particular relevance to those who skip breakfast. However,
it is also important that effects of seaweed on cognition are explored in the absence of this fast since
this is not typical behavior for most people. Although not a focus of the current study, recent data
also indicates that phlorotannins from brown seaweeds are metabolized in the large intestine with
the majority of metabolites not appearing until 8 h post-ingestion [54], which may provide further
support for a later testing regime. In addition to glucoregulatory measures, it would be of interest
to explore salivary α-amylase. Although inhibition of α-amylase and α-glucosidase by the seaweed
extract is known to occur within the digestive tract environment, rather than at the systemic level,
the impact of seaweed on salivary α-amylase levels is unknown and this would provide a useful
marker for α-amylase and α-glucosidase inhibition if shown. Furthermore, previous studies showing
the importance of insulin sensitivity as a predictor of cognitive change following short-term cocoa
consumption demonstrate the need to establish the effects of brown seaweed extract over a longer
term following repeated intake.

Acknowledgments: This study was funded by innoVactiv Inc., Rimouski, QC, Canada.

Author Contributions: C.F.H.-R., P.A.J., F.L.D, J.S.F., J.B. and D.O.K. contributed to the design of the protocol;
F.L.D. and J.S.F. collected the data; C.F.H.-R., P.A.J. and C.L. contributed to the analysis of the data; all authors
contributed to the writing of the paper.

Conflicts of Interest: J.B. is an employee of innoVactiv Inc., the sponsors of this study. J.B. contributed to the
design of the protocol and the writing of the paper but had no role in collection, analysis or interpretation of
the results.

References

1. Sunram-Lea, S.I.; Owen, L.; Finnegan, Y.; Hu, H.L. Dose-response investigation into glucose facilitation of
memory performance and mood in healthy young adults. J. Psychopharmacol. 2011, 25, 1076–1087. [CrossRef]
[PubMed]

2. Bjorck, I.; Liljeberg, H.; Ostman, E. Low glycaemic-index foods. Br. J. Nutr. 2000, 83, S149–S155. [CrossRef]
[PubMed]

3. Philippou, E.; Constantinou, M. The influence of glycemic index on cognitive functioning: A systematic
review of the evidence. Adv. Nutr. 2014, 5, 119–130. [CrossRef] [PubMed]

4. Smith, M.A.; Foster, J.K. The impact of a high versus a low glycaemic index breakfast cereal meal on verbal
episodic memory in healthy adolescents. Nutr. Neurosci. 2008, 11, 219–227. [CrossRef] [PubMed]

5. Cooper, S.B.; Bandelow, S.; Nute, M.L.; Morris, J.G.; Nevill, M.E. Breakfast glycaemic index and cognitive
function in adolescent school children. Br. J. Nutr. 2012, 107, 1823–1832. [CrossRef] [PubMed]

6. Sogaard, M.; Abe, J.; Martineauclaire, M.F.; Svensson, B. α-amylases—Structure and function. Carbohydr. Polym.
1993, 21, 137–146. [CrossRef]

http://dx.doi.org/10.1177/0269881110367725
http://www.ncbi.nlm.nih.gov/pubmed/20488830
http://dx.doi.org/10.1017/S0007114500001094
http://www.ncbi.nlm.nih.gov/pubmed/10889806
http://dx.doi.org/10.3945/an.113.004960
http://www.ncbi.nlm.nih.gov/pubmed/24618754
http://dx.doi.org/10.1179/147683008X344110
http://www.ncbi.nlm.nih.gov/pubmed/18782482
http://dx.doi.org/10.1017/S0007114511005022
http://www.ncbi.nlm.nih.gov/pubmed/22017815
http://dx.doi.org/10.1016/0144-8617(93)90008-R


Nutrients 2018, 10, 85 12 of 14

7. Roth, J.; Ziak, M.; Zuber, C. The role of glucosidase ii and endomannosidase in glucose trimming of
asparagine-linked oligosaccharides. Biochimie 2003, 85, 287–294. [CrossRef]

8. Bischoff, H. Pharmacology of α-glucosidase inhibition. Eur. J. Clin. Investig. 1994, 24, 3–10.
9. Apostolidis, E.; Lee, C.M. In vitro potential of ascophyllum nodosum phenolic antioxidant-mediated

α-glucosidase and α-amylase inhibition. J. Food Sci. 2010, 75, H97–H102. [CrossRef] [PubMed]
10. Lordan, S.; Smyth, T.J.; Soler-Vila, A.; Stanton, C.; Ross, R.P. The α-amylase and α-glucosidase inhibitory

effects of irish seaweed extracts. Food Chem. 2013, 141, 2170–2176. [CrossRef] [PubMed]
11. Nwosu, F.; Morris, J.; Lund, V.A.; Stewart, D.; Ross, H.A.; McDougall, G.J. Anti-proliferative and potential

anti-diabetic effects of phenolic-rich extracts from edible marine algae. Food Chem. 2011, 126, 1006–1012.
[CrossRef]

12. Pantidos, N.; Boath, A.; Lund, V.; Conner, S.; McDougall, G.J. Phenolic-rich extracts from the edible
seaweed, ascophyllum nodosum, inhibit α-amylase and α-glucosidase: Potential anti-hyperglycemic effects.
J. Funct. Food. 2014, 10, 201–209. [CrossRef]

13. Boath, A.S.; Stewart, D.; McDougall, G.J. Berry components inhibit α-glucosidase in vitro: Synergies between
acarbose and polyphenols from black currant and rowanberry. Food Chem. 2012, 135, 929–936. [CrossRef]
[PubMed]

14. Grussu, D.; Stewart, D.; McDougall, G.J. Berry polyphenols inhibit α-amylase in vitro: Identifying active
components in rowanberry and raspberry. J. Agric. Food Chem. 2011, 59, 2324–2331. [CrossRef] [PubMed]

15. McDougall, G.J.; Dobson, P.; Smith, P.; Blake, A.; Stewart, D. Assessing potential bioavallability of raspberry
anthocyanins using an in vitro digestion system. J. Agric. Food Chem. 2005, 53, 5896–5904. [CrossRef]
[PubMed]

16. McDougall, G.J.; Stewart, D. The inhibitory effects of berry polyphenols on digestive enzymes. Biofactors
2005, 23, 189–195. [CrossRef] [PubMed]

17. Roy, M.C.; Anguenot, R.; Fillion, C.; Beaulieu, M.; Berube, J.; Richard, D. Effect of a commercially-available
algal phlorotannins extract on digestive enzymes and carbohydrate absorption in vivo. Food Res. Int. 2011,
44, 3026–3029. [CrossRef]

18. Gabbia, D.; Dall’Acqua, S.; Di Gangi, I.M.; Bogialli, S.; Caputi, V.; Albertoni, L.; Marsilio, I.; Paccagnella, N.;
Carrara, M.; Giron, M.C.; et al. The phytocomplex from fucus vesiculosus and ascophyllum nodosum
controls postprandial plasma glucose levels: An in vitro and in vivo study in a mouse model of nash.
Mar. Drugs 2017, 15, 41. [CrossRef] [PubMed]

19. Paradis, M.E.; Couture, P.; Lamarche, B. A randomised crossover placebo-controlled trial investigating the
effect of brown seaweed (Ascophyllum nodosum and Fucus vesiculosus) on postchallenge plasma glucose and
insulin levels in men and women. Appl. Physiol. Nutr. Metab. 2011, 36, 913–919. [CrossRef] [PubMed]

20. Stonehouse, W.; Conlon, C.A.; Podd, J.; Hill, S.R.; Minihane, A.M.; Haskell, C.; Kennedy, D. Dha
supplementation improved both memory and reaction time in healthy young adults: A randomized
controlled trial. Am. J. Clin. Nutr. 2013, 97, 1134–1143. [CrossRef] [PubMed]

21. Dodd, F.L.; Kennedy, D.O.; Riby, L.M.; Haskell-Ramsay, C.F. A double-blind, placebo-controlled study
evaluating the effects of caffeine and L-theanine both alone and in combination on cerebral blood flow,
cognition and mood. Psychopharmacology 2015, 232, 2563–2576. [CrossRef] [PubMed]

22. Watson, A.W.; Haskell-Ramsay, C.F.; Kennedy, D.O.; Cooney, J.M.; Trower, T.; Scheepens, A. Acute
supplementation with blackcurrant extracts modulates cognitive functioning and inhibits monoamine
oxidase-B in healthy young adults. J. Funct. Foods 2015, 17, 524–539. [CrossRef]

23. Alharbi, M.H.; Lamport, D.J.; Dodd, G.F.; Saunders, C.; Harkness, L.; Butler, L.T.; Spencer, J.P. Flavonoid-rich
orange juice is associated with acute improvements in cognitive function in healthy middle-aged males.
Eur. J. Nutr. 2016, 55, 2021–2029. [CrossRef] [PubMed]

24. Cox, K.H.; Pipingas, A.; Scholey, A.B. Investigation of the effects of solid lipid curcumin on cognition and
mood in a healthy older population. J. Psychopharmacol. (Oxf. Engl.) 2015, 29, 642–651. [CrossRef] [PubMed]

25. Haskell-Ramsay, C.F.; Stuart, R.C.; Okello, E.J.; Watson, A.W. Cognitive and mood improvements following
acute supplementation with purple grape juice in healthy young adults. Eur. J. Nutr. 2017, 56, 2621–2631.
[CrossRef] [PubMed]

26. Scholey, A.B.; French, S.J.; Morris, P.J.; Kennedy, D.O.; Milne, A.L.; Haskell, C.F. Consumption of cocoa
flavanols results in acute improvements in mood and cognitive performance during sustained mental effort.
J. Psychopharmacol. 2010, 24, 1505–1514. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/S0300-9084(03)00049-X
http://dx.doi.org/10.1111/j.1750-3841.2010.01544.x
http://www.ncbi.nlm.nih.gov/pubmed/20492300
http://dx.doi.org/10.1016/j.foodchem.2013.04.123
http://www.ncbi.nlm.nih.gov/pubmed/23870944
http://dx.doi.org/10.1016/j.foodchem.2010.11.111
http://dx.doi.org/10.1016/j.jff.2014.06.018
http://dx.doi.org/10.1016/j.foodchem.2012.06.065
http://www.ncbi.nlm.nih.gov/pubmed/22953807
http://dx.doi.org/10.1021/jf1045359
http://www.ncbi.nlm.nih.gov/pubmed/21329358
http://dx.doi.org/10.1021/jf050131p
http://www.ncbi.nlm.nih.gov/pubmed/16028971
http://dx.doi.org/10.1002/biof.5520230403
http://www.ncbi.nlm.nih.gov/pubmed/16498205
http://dx.doi.org/10.1016/j.foodres.2011.07.023
http://dx.doi.org/10.3390/md15020041
http://www.ncbi.nlm.nih.gov/pubmed/28212301
http://dx.doi.org/10.1139/h11-115
http://www.ncbi.nlm.nih.gov/pubmed/22087795
http://dx.doi.org/10.3945/ajcn.112.053371
http://www.ncbi.nlm.nih.gov/pubmed/23515006
http://dx.doi.org/10.1007/s00213-015-3895-0
http://www.ncbi.nlm.nih.gov/pubmed/25761837
http://dx.doi.org/10.1016/j.jff.2015.06.005
http://dx.doi.org/10.1007/s00394-015-1016-9
http://www.ncbi.nlm.nih.gov/pubmed/26280945
http://dx.doi.org/10.1177/0269881114552744
http://www.ncbi.nlm.nih.gov/pubmed/25277322
http://dx.doi.org/10.1007/s00394-017-1454-7
http://www.ncbi.nlm.nih.gov/pubmed/28429081
http://dx.doi.org/10.1177/0269881109106923
http://www.ncbi.nlm.nih.gov/pubmed/19942640


Nutrients 2018, 10, 85 13 of 14

27. Whyte, A.R.; Schafer, G.; Williams, C.M. Cognitive effects following acute wild blueberry supplementation
in 7- to 10-year-old children. Eur. J. Nutr. 2016, 55, 2151–2162. [CrossRef] [PubMed]

28. Girouard, H.; Iadecola, C. Neurovascular coupling in the normal brain and in hypertension, stroke, and
alzheimer disease. J. Appl. Physiol. 2006, 100, 328–335. [CrossRef] [PubMed]

29. Iadecola, C. Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat. Rev. Neurosci.
2004, 5, 347–360. [CrossRef] [PubMed]

30. Ruitenberg, A.; den Heijer, T.; Bakker, S.L.; van Swieten, J.C.; Koudstaal, P.J.; Hofman, A.; Breteler, M.M.
Cerebral hypoperfusion and clinical onset of dementia: The Rotterdam study. Ann. Neurol. 2005, 57, 789–794.
[CrossRef] [PubMed]

31. Brickman, A.M.; Khan, U.A.; Provenzano, F.A.; Yeung, L.K.; Suzuki, W.; Schroeter, H.; Wall, M.; Sloan, R.P.;
Small, S.A. Enhancing dentate gyrus function with dietary flavanols improves cognition in older adults.
Nat. Neurosci. 2014, 17, 1798–1803. [CrossRef] [PubMed]

32. Francis, S.; Head, K.; Morris, P.; Macdonald, I. The effect of flavanol-rich cocoa on the fmri response to
a cognitive task in healthy young people. J. Cardiovasc. Pharmacol. 2006, 47, S215–S220. [CrossRef] [PubMed]

33. Kennedy, D.O.; Wightman, E.L.; Reay, J.L.; Lietz, G.; Okello, E.J.; Wilde, A.; Haskell, C.F. Effects of resveratrol
on cerebral blood flow variables and cognitive performance in humans: A double-blind, placebo-controlled,
crossover investigation. Am. J. Clin. Nutr. 2010, 91, 1590–1597. [CrossRef] [PubMed]

34. Papanikolaou, Y.; Palmer, H.; Binns, M.A.; Jenkins, D.J.A.; Greenwood, C.E. Better cognitive performance
following a low-glycaemic-index compared with a high-glycaemic-index carbohydrate meal in adults with
type 2 diabetes. Diabetologia 2006, 49, 855–862. [CrossRef] [PubMed]

35. Lamport, D.J.; Chadwick, H.K.; Dye, L.; Mansfield, M.W.; Lawton, C.L. A low glycaemic load breakfast can
attenuate cognitive impairments observed in middle aged obese females with impaired glucose tolerance.
Nutr. Metab. Carbiovasc. Dis. 2014, 24, 1128–1136. [CrossRef] [PubMed]

36. Mahoney, C.R.; Taylor, H.A.; Kanarek, R.B.; Samuel, P. Effect of breakfast composition on cognitive processes
in elementary school children. Physiol. Behav. 2005, 85, 635–645. [CrossRef] [PubMed]

37. Micha, R.; Rogers, P.J.; Nelson, M. The glycaemic potency of breakfast and cognitive function in school
children. Eur. J. Clin. Nutr. 2010, 64, 948–957. [CrossRef] [PubMed]

38. Lamport, D.J.; Hoyle, E.; Lawton, C.L.; Mansfield, M.W.; Dye, L. Evidence for a second meal cognitive effect:
Glycaemic responses to high and low glycaemic index evening meals are associated with cognition the
following morning. Nutr. Neurosci. 2011, 14, 66–71. [CrossRef] [PubMed]

39. Torronen, R.; Kolehmainen, M.; Sarkkinen, E.; Mykkanen, H.; Niskanen, L. Postprandial glucose, insulin,
and free fatty acid responses to sucrose consumed with blackcurrants and lingonberries in healthy women.
Am. J. Clin. Nutr. 2012, 96, 527–533. [CrossRef] [PubMed]

40. Torronen, R.; Sarkkinen, E.; Niskanen, T.; Tapola, N.; Kilpi, K.; Niskanen, L. Postprandial glucose, insulin
and glucagon-like peptide 1 responses to sucrose ingested with berries in healthy subjects. Br. J. Nutr. 2012,
107, 1445–1451. [CrossRef] [PubMed]

41. Torronen, R.; Kolehmainen, M.; Sarkkinen, E.; Poutanen, K.; Mykkanen, H.; Niskanen, L. Berries reduce
postprandial insulin responses to wheat and rye breads in healthy women. J. Nutr. 2013, 143, 430–436.
[CrossRef] [PubMed]

42. Sapwarobol, S.; Adisakwattana, S.; Changpeng, S.; Ratanawachirin, W.; Tanruttanawong, K.; Boonyarit, W.
Postprandial blood glucose response to grape seed extract in healthy participants: A pilot study.
Pharmacogn. Mag. 2012, 8, 192–196. [CrossRef] [PubMed]

43. Lamport, D.J.; Lawton, C.L.; Mansfield, M.W.; Dye, L. Impairments in glucose tolerance can have a negative
impact on cognitive function: A systematic research review. Neurosci. Biobehav. Rev. 2009, 33, 394–413.
[CrossRef] [PubMed]

44. Ryan, C.M.; Freed, M.I.; Rood, J.A.; Cobitz, A.R.; Waterhouse, B.R.; Strachan, M.W.J. Improving metabolic
control leads to better working memory in adults with type 2 diabetes. Diabetes Care 2006, 29, 345–351.
[CrossRef] [PubMed]

45. Desideri, G.; Kwik-Uribe, C.; Grassi, D.; Necozione, S.; Ghiadoni, L.; Mastroiacovo, D.; Raffaele, A.; Ferri, L.;
Bocale, R.; Lechiara, M.C.; et al. Benefits in cognitive function, blood pressure, and insulin resistance through
cocoa flavanol consumption in elderly subjects with mild cognitive impairment: The cocoa, cognition, and
aging (cocoa) study. Hypertension 2012, 60, 794–801. [CrossRef] [PubMed]

http://dx.doi.org/10.1007/s00394-015-1029-4
http://www.ncbi.nlm.nih.gov/pubmed/26437830
http://dx.doi.org/10.1152/japplphysiol.00966.2005
http://www.ncbi.nlm.nih.gov/pubmed/16357086
http://dx.doi.org/10.1038/nrn1387
http://www.ncbi.nlm.nih.gov/pubmed/15100718
http://dx.doi.org/10.1002/ana.20493
http://www.ncbi.nlm.nih.gov/pubmed/15929050
http://dx.doi.org/10.1038/nn.3850
http://www.ncbi.nlm.nih.gov/pubmed/25344629
http://dx.doi.org/10.1097/00005344-200606001-00018
http://www.ncbi.nlm.nih.gov/pubmed/16794461
http://dx.doi.org/10.3945/ajcn.2009.28641
http://www.ncbi.nlm.nih.gov/pubmed/20357044
http://dx.doi.org/10.1007/s00125-006-0183-x
http://www.ncbi.nlm.nih.gov/pubmed/16508776
http://dx.doi.org/10.1016/j.numecd.2014.04.015
http://www.ncbi.nlm.nih.gov/pubmed/24925124
http://dx.doi.org/10.1016/j.physbeh.2005.06.023
http://www.ncbi.nlm.nih.gov/pubmed/16085130
http://dx.doi.org/10.1038/ejcn.2010.96
http://www.ncbi.nlm.nih.gov/pubmed/20571500
http://dx.doi.org/10.1179/1476830511Y.0000000002
http://www.ncbi.nlm.nih.gov/pubmed/21605502
http://dx.doi.org/10.3945/ajcn.112.042184
http://www.ncbi.nlm.nih.gov/pubmed/22854401
http://dx.doi.org/10.1017/S0007114511004557
http://www.ncbi.nlm.nih.gov/pubmed/21929838
http://dx.doi.org/10.3945/jn.112.169771
http://www.ncbi.nlm.nih.gov/pubmed/23365108
http://dx.doi.org/10.4103/0973-1296.99283
http://www.ncbi.nlm.nih.gov/pubmed/23060692
http://dx.doi.org/10.1016/j.neubiorev.2008.10.008
http://www.ncbi.nlm.nih.gov/pubmed/19026680
http://dx.doi.org/10.2337/diacare.29.02.06.dc05-1626
http://www.ncbi.nlm.nih.gov/pubmed/16443885
http://dx.doi.org/10.1161/HYPERTENSIONAHA.112.193060
http://www.ncbi.nlm.nih.gov/pubmed/22892813


Nutrients 2018, 10, 85 14 of 14

46. Mastroiacovo, D.; Kwik-Uribe, C.; Grassi, D.; Necozione, S.; Raffaele, A.; Pistacchio, L.; Righetti, R.;
Bocale, R.; Lechiara, M.C.; Marini, C.; et al. Cocoa flavanol consumption improves cognitive function,
blood pressure control, and metabolic profile in elderly subjects: The cocoa, cognition, and aging (cocoa)
study—A randomized controlled trial. Am. J. Clin. Nutr. 2015, 101, 538–548. [CrossRef] [PubMed]

47. Kaplan, R.J.; Greenwood, C.E.; Winocur, G.; Wolever, T.M.S. Cognitive performance is associated with
glucose regulation in healthy elderly persons and can be enhanced with glucose and dietary carbohydrates.
Am. J. Clin. Nutr. 2000, 72, 825–836. [PubMed]

48. Benton, D.; Maconie, A.; Williams, C. The influence of the glycaemic load of breakfast on the behaviour of
children in school. Physiol. Behav. 2007, 92, 717–724. [CrossRef] [PubMed]

49. Ingwersen, J.; Defeyter, M.A.; Kennedy, D.O.; Wesnes, K.A.; Scholey, A.B. A low glycaemic index breakfast
cereal preferentially prevents children’s cognitive performance from declining throughout the morning.
Appetite 2007, 49, 240–244. [CrossRef] [PubMed]

50. Wesnes, K.A.; Pincock, C.; Richardson, D.; Helm, G.; Hails, S. Breakfast reduces declines in attention and
memory over the morning in schoolchildren. Appetite 2003, 41, 329–331. [CrossRef] [PubMed]

51. Benton, D.; Ruffin, M.P.; Lassel, T.; Nabb, S.; Messaoudi, M.; Vinoy, S.; Desor, D.; Lang, V. The delivery rate
of dietary carbohydrates affects cognitive performance in both rats and humans. Psychopharmacology 2003,
166, 86–90. [CrossRef] [PubMed]

52. Reay, J.L.; Kennedy, D.O.; Scholey, A.B. Single doses of panax ginseng (G115) reduce blood glucose levels
and improve cognitive performance during sustained mental activity. J. Psychopharmacol. 2005, 19, 357–365.
[CrossRef] [PubMed]

53. Jakubowicz, D.; Wainstein, J.; Ahren, B.; Landau, Z.; Bar-Dayan, Y.; Froy, O. Fasting until noon triggers
increased postprandial hyperglycemia and impaired insulin response after lunch and dinner in individuals
with type 2 diabetes: A randomized clinical trial. Diabetes Care 2015, 38, 1820–1826. [CrossRef] [PubMed]

54. Corona, G.; Ji, Y.; Anegboonlap, P.; Hotchkiss, S.; Gill, C.; Yaqoob, P.; Spencer, J.P.E.; Rowland, I.
Gastrointestinal modifications and bioavailability of brown seaweed phlorotannins and effects on
inflammatory markers. Br. J. Nutr. 2016, 115, 1240–1253. [CrossRef] [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3945/ajcn.114.092189
http://www.ncbi.nlm.nih.gov/pubmed/25733639
http://www.ncbi.nlm.nih.gov/pubmed/10966906
http://dx.doi.org/10.1016/j.physbeh.2007.05.065
http://www.ncbi.nlm.nih.gov/pubmed/17617427
http://dx.doi.org/10.1016/j.appet.2006.06.009
http://www.ncbi.nlm.nih.gov/pubmed/17224202
http://dx.doi.org/10.1016/j.appet.2003.08.009
http://www.ncbi.nlm.nih.gov/pubmed/14637332
http://dx.doi.org/10.1007/s00213-002-1334-5
http://www.ncbi.nlm.nih.gov/pubmed/12488949
http://dx.doi.org/10.1177/0269881105053286
http://www.ncbi.nlm.nih.gov/pubmed/15982990
http://dx.doi.org/10.2337/dc15-0761
http://www.ncbi.nlm.nih.gov/pubmed/26220945
http://dx.doi.org/10.1017/S0007114516000210
http://www.ncbi.nlm.nih.gov/pubmed/26879487
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Design 
	Initial Screening 
	Participants 
	Treatment 
	Cognitive and Mood Measures 
	Word Presentation 
	Immediate Word Recall 
	Simple Reaction Time (SRT) 
	Digit Vigilance 
	Choice Reaction Time (CRT) 
	Visual Analogue Scales (VAS) 

	Procedure 
	Statistical Analysis 

	Results 
	Participant Demographics 
	Baseline Performance 
	Intervention Effects 
	Digit Vigilance 
	Choice Reaction Time 
	Simple Reaction Time, Word Recall and VAS Mood Scale Ratings 

	Treatment Guess 
	Safety Evaluation 

	Discussion 
	Conclusions 
	References

